Невероятно, но факт!






купонлар.ру
Главная / Космос / Перспективные направления совершенствования энергетических и двигательных установок ракетно-космической техники

Перспективные направления совершенствования энергетических и двигательных установок ракетно-космической техники

Перспективные космические задачи, требующие повышенного энергопотребленияДвигательные и энергетические установки (ЭУ) ракетно-космических комплексов относятся к числу наиболее трудоемких, сложных в отработке и производстве подсистем. Уровень энергомассового совершенства, ресурс активного функционирования, надежность, технико-экономические показатели ДУ и ЭУ во многом определяют функциональные возможности и технико-экономическую эффективность ракетно-космического комплекса в целом. Сроки разработки и отработки новых образцов ДУ и ЭУ весьма длительны – 5-7 лет при условии наличия достаточного научно-технического задела. Именно поэтому следует обеспечивать его опережающее развитие. Только при таком условии могут своевременно разрабатываться и создаваться комплексы и системы, не уступающие по основным показателям зарубежным и способные конкурировать с ними на мировом рынке.

В XXI в. ракетно-космическая техника должна стать одним из основных факторов развития производительных сил в основных областях производственной сферы, определяющих уровень благосостояния общества: в энергетике, производстве материалов и продовольствия, добыче сырьевых ресурсов и др. Как показывают результаты поисковых исследований, РКТ помимо эффективного использования в сложившихся направлениях (глобальные коммуникационные, информационные и навигационные системы, космические комплексы для изучения природных ресурсов, экологического мониторинга и т.д.) в XXI в. может найти широкое применение для решения таких глобальных, тесно связанных между собой проблем, как энергетические и экологические. Создание опережающего научно-технического задела по разработке систем и средств бортовой (солнечной, химической и ядерной) энергетики и реализация его при разработке систем энергоснабжения и двигательных установок позволят повысить эффективность целевого использования КА, обеспечат необходимую базу для выполнения космических программ в XXI в.

В основе современной топливной энергетики лежат два вида топлива – ядерное и химическое. Ядерная энергетика основана на выделении части энергии связи ядерных нуклонов при реакциях деления или синтеза ядра. Химическая энергетика основана на выделении энергии химической связи атомов и молекул топлив. Существует и промежуточный источник энергии – выделение энергии связи атомных электронов. Принципиальная возможность использования этого вида энергии базируется на физике взаимодействия мощного короткоимпульсного лазерного излучения с веществом.

Выделение энергии связи атомных оболочек возможно за время менее 10-17 с при ионизационной перестройке атомных электронных оболочек в сверхсильных, превышающих внутриатомные, электромагнитных полях без затрат энергии на ионизацию и тепловые потери. Современный уровень развития лазерной техники позволяет реализовать указанную перестройку при воздействии на вещество лазерного излучения с интенсивностью т более 1017 Вт/см2 и длительностью импульса воздействия менее 10-13 с.

Стадии процесса взаимодействия высокоинтенсивного лазерного излучения сверхкороткой длительности с веществом:

  1. Начальная фаза воздействия сводится к индуцированию в скин-слое размером порядка 10,5 см крупномасштабнойПриоритетные направления развития научно-технического задела в области космического энергомашиностроения вихревой электронной структуры с электрическим полем с напряженностью, превышающей атомную напряженность, и тока свободных электронов с относительной концентрацией порядка 1021 см3. В этих условиях идет процесс анизотропии ионизации атомов и анизотропии нагрева электронов в плоскости, перпендикулярной лазерному лучу. Частоты процесса порядка плазменной частоты (1015-1016 Гц). Благодаря развитию этих процессов в нелинейной стадии вайбелевской неустойчивости плотность вихревой энергии и плотность энергии анизотропии сравниваются. При этом амплитуда магнитной индукции полей достигает насыщения порядка 10 МГс. Данная стадия воздействия, названная индукционной, характеризуется накоплением энергии в электронном компоненте, при этом спонтанно генерируемые магнитные поля из-за развития вайбелевских неустойчивое – тей поддерживаются на квазистационарном уровне в течение всего времени действия лазерного импульса.
  2. Развитие высокочастотных потенциальных и вихревых неустойчивостей переднего фронта лазерного импульса приводит к появлению эффекта коллективного ускорения малой группы электронов с высоким темпом ускорения – более 10 МэВ/фс. Электростатические ионизационные неустойчивости способствуют образованию в плазменном следе значительной концентрации энергии (более ~107 Дж/см2) потенциальных колебаний вследствие накопления отрицательного объемного заряда за короткие периоды ионизации. Развитие коллективных процессов на переднем фронте лазерного импульса приводит к образованию тонкой структуры фронта размером ~10,7-10,8 см с амплитудами напряженностей магнитного и электрического полей, превышающими порог устойчивости атома. При этом происходит конверсия лазерного излучения в различные виды энергии.
  3. Воздействие на атом индуцированных лазерным излучением вихревых электромагнитных полей с интенсивностью, превышающей атомную, приводит к спонтанному распаду верхних оболочек атома (ионизационному взрыву) за периоды туннельной ионизации ~10-17 с вследствие понижения потенциального барьера воздействием высокочастотных полей. Ионизационный взрыв сопровождается выделением потока энергии интенсивностью более 1017 Вт/см2. За счет спинового механизма разделения электронов по энергетическим состояниям происходит уплотнение низколежащих оболочек вплоть до К-оболочки. Происходит спонтанный рост индукции магнитного поля в атоме за счет перестройки структуры его электронных оболочек. Эта перестройка начинается с пороговой величины индукции магнитного поля порядка 10 МГс.
  4. Уплотнение низколежащих электронных оболочек атома приводит к их деформации с повышением напряженностей электрического и магнитных пол ей, превышающих запас устойчивости этих оболочек. При этом возрастает вероятность К-захвата электрона ядром. Время К-захвата существенно уменьшается вплоть до времени ионизации верхних оболочек (~10-17 с). Процессы структурной перестройки верхних и нижних электронных оболочек происходят в одном масштабе времени туннельной ионизации (~10-17 с).

В отличие от спонтанного К-захват носит стимулированный характер с большей вероятностью и с возбуждением внутренней перестройки структуры ядра. Выделяющаяся из ядра энергия идет на генерацию у-, (в-, х-излучений, образование быстрых конверсионных Оже-электронов. Возможна дальнейшая реакция распада ядра с выходом нейтронов. Такова гипотеза выделения энергии связи атомных оболочек.

Необходимость двойного использования космоса

В настоящее время все большее число государств приходит к пониманию важности использования космического пространства для решения задач национальной безопасности и социально-экономического прогресса и в связи с этим в тех или иных формах активизирует свою космическую деятельность. И хотя космический потенциал России позволяет говорить о ее полноправном месте в ряду ведущих космических держав, уже сегодня возникла…

Принципы создания перспективной многоцелевой космической системы ретрансляции информации

Назначение и задачи КСР. Важнейшим направлением повышения оперативности и глобальности управления низкоорбитальными КА при одновременном уменьшении числа КИПов до одного-двух является применение космической системы ретрансляции информации на основе спутников-ретрансляторов (СР) на геостационарной орбите. До создания КСР задачи увеличения продолжительности и глобальности информационного взаимодействия с объектами РКТ решались путем развития НАКУ, измерительных комплексов космодромов (ИКК), комплексов…

Гражданские средства

К категории так называемых гражданских КА относятся спутники, разрабатываемые и запускаемые по государственным программам, исключая КА военного назначения. К их числу могут быть отнесены исследовательские и экспериментальные КА, КА связи, КА землеобзора, включающие метеорологические КА и КА ДЗЗ. Зарубежными специалистами прогнозируется, что общее число гражданских КА, запускаемых в период 1998-2007 гг., составит более 200, т.е….

Комплексы управления КА Европейского космического агентства

Европейское космическое агентство – ЕКА (ESA – European Spase Agency) создано в 1975 г. для содействия сотрудничеству европейских стран в области космических исследований, разработки космической техники и поиску ее прикладного использования. Первоначально в ЕКА вошли 11 стран (Франция,ФРГ, Великобритания, Италия, Испания, Швеция, Бельгия, Дания, Нидерланды, Ирландия, Швейцария). Впоследствии в ЕКА вошли Норвегия, Австрия, Канада, Финляндия….

Достигнутый уровень долговечности отечественных КА

Анализ развития РКТ в нашей стране за рассматриваемый период позволяет отметить следующее: В многоспутниковых системах связи, ретрансляции, навигации, радиотехнической разведки и системы предупреждения о ракетном нападении используются КА с гарантийным ресурсом 1-3 года. Фактические средние сроки функционирования превышают гарантийные на 1-2 года. Отдельные образцы имеют САС 5-8 и даже 10 лет (при их использовании в…

Многофункциональные конструкции

Благодаря объединению функций электроники, датчиков, систем распределения электропитания и терморегулирования с применением очень легких модульных конструкций на борту перспективных КА не будет кабелей и связанных с шиной распределительных коробок. Это позволит снизить массу КА почти в 10 раз, а занимаемый аппаратурой объем в 2 раза. Электронные модули на множестве микросхем будут монтироваться непосредственно на конструкции…

История создания космодромов

Космодром – это оборудованная в инженерном отношении территория, на которой размещены функционально увязанные между собой сооружения и технические средства, обеспечивающие прием с заводов-изготовителей и хранение элементов ракетно-космической техники, подготовку средств выведения и космических аппаратов и их пуск. При использовании многоразовых средств выведения на космодроме могут быть созданы ремонтно-профилактические позиции для обеспечения послеполетного обслуживания этих средств….

Состояние и перспективы развития комплексов средств автоматизации

Основу комплексов средств автоматизации (КСА) центров управления полетом КА и центров обработки информации, эксплуатируемых в НАКУ в 1990-х гг., составляли малопроизводительные вычислительные системы второго и третьего поколений, более 50 % которых многократно выработали установленный ресурс, устарел и морально и физически (ЭВМ серии СМ, М-222, ВК-2М45/46, “Эльбрус-1” и др.) Уровень автоматизации управления КА составлял 70-80%. Неудовлетворительное…

Коммерческие средства ДЗЗ

Коммерческие средства дистанционного зондирования Земли из космоса только начинают свое развитие. Сельское хозяйство, региональное развитие, строительство, добывающая промышленность все шире используют данные ДЗЗ. Существующие космические средства ДЗЗ, такие как Spot, Landsat и т.п., не являются чисто коммерческими, несмотря на рыночные принципы распространения получаемой информации. Эти системы субсидируются государственными органами, так как на современном этапе их…

Средства управления КА Франции

Национальный центр космических исследований КНЕС (CNES) ведет как гражданские, так и военные космические программы (во взаимодействии с МО). Создана военная система спутниковой связи Sirakus (1988 г.) на основе КА Telecom. С 1995 г. запускаются разведывательные КА Helios, созданные на базе КА Spot. Ведется разработка КА Helios-2 с участием других европейских стран. Продолжается эксплуатация КА ДЗЗ…

Все права защищены ©2006-2019. Перепечатка материалов с сайта возможна только с указанием ссылки на сайт – Невероятно, но факт!. Email: hi@poznovatelno.ru