Невероятно, но факт!
Главная / Космос / Выбор проектных характеристик радиолиний дальней космической связи

Выбор проектных характеристик радиолиний дальней космической связи

Выбор проектных характеристик космических радиолиний является сложной инженерной задачей и требует учета большого числа различных факторов, влияющих на энергетику радиолиний и качество передачи информации на требуемые дальности. Рассмотрим выражение, определяющее зависимость максимальной дальности связи D от параметров космической радиолинии,

где Р – мощность передатчика; S6, S3 – эффективные площади бортовой и наземной антенн; hS – коэффициент, определяемый суммарными потерями энергии сигнала в элементах антенно-фидерных трактов и при распространении в окружающей среде; А – длина радиоволны; к = 1,38*10-23 Дж/К – постоянная Больцмана; ГЭф – эффективная температура шума на входе приемной системы; Д – ширина полосы пропускания приемника до детектора; дп – пороговое отношение мощности сигнала к мощности шума на входе приемного устройства, при котором обеспечивается заданное качество принимаемого сообщения.

Формула справедлива как для запросных (“Земля-борт”), так и для ответных (“борт – Земля”) радиолиний. В дальнейшем будем рассматривать в основном ответную радиолинию как наиболее напряженную с точки зрения обеспечения требуемого энергетического потенциала. Одна из основных проблем проектирования радиосистем дальней космической связи – выбор оптимального диапазона радио-волн.

В формуле наряду с явной зависимостью D от А, функциями длины волны являются эффективная температура шума ТЭф и составляющие коэффициента hS, характеризующие потери энергии сигнала в атмосфере Земли, планет и в межпланетной плазме. Потери энергии радиоволн в ионосфере обусловлены их отражением и рассеянием, а также вращением плоскости поляризации при распространении. Указанные эффекты уменьшаются с уменьшением длины радиоволны. При А < 3 м потери в ионосфере несущественны в дециметровом диапазоне ими можно пренебречь.

Потери энергии радиоволн в тропосфере Земли, наоборот, растут с уменьшением длины волны, они малы при А > 3 см. При уменьшении длины волны А < 3 см потери начинают расти вследствие наличия резонансных линий поглощения в спектре молекулярных компонент паров воды и кислорода земной атмосферы. Графические зависимости потерь энергии радиосигнала в земной атмосфере от длины волны при различных углах места антенны представлены на рис. Поглощение радиоволн, вызываемое осадками, в основном дождем и туманом,растет с уменьшением длины волны, зависит от интенсивности осадков и становится существенным при А < 5 см.

На рис. показаны кривые зависимости потерь энергии радиосигнала на трассе длиной 1 км от длины волны X иПоглощение радиоволн, вызываемое дождем, на трассе длиной 1 км интенсивности дождя. Нужно иметь в виду, что и другие планеты Солнечной системы имеют атмосферу, поэтому при выборе характеристик радиоканала связи с КА, находящимся на поверхности планеты, необходимо учитывать условия распространения радиоволн в ее атмосфере. Уровень шумов на входе приемной системы определяется собственными шумами входных устройств приемника, потерями в элементах антенно-фидерного устройства (АФУ) и внешними шумами, вызываемыми тепловым излучением атмосферы, поверхности Земли, Галактики и дискретных космических источников – Солнца, Луны.

Атмосферные шумы на высоких частотах обусловлены поглощением энергии радиоволн в газах тропосферы и атмосферных образованиях (облаках, дожде, тумане). Интенсивность этих шумов зависит от длины пути радиосигнала в среде. Далее на рис. представлены графики зависимости яркостной температуры стандартной атмосферы от длины радиоволны и угла места антенны, рассчитанные для средних условий европейской части территории РФ.

На этом же рисунке приведены графики зависимости от длины волны яркостной температуры космического из лучения, соответствующей галактическому центру (Tkmax) и “холодному” небу вблизи Галактики (Tkmin). Представленные графики могут быть использованы для приближенных оценок вклада атмосферы и галактических шумов в эффективную температуру шума на входе приемного устройства.

Из рис. ниже следует, что при длинах волн менее 10 см атмосферный шум преобладает над галактическим. При А = 1,35 см и X = 0,5 см имеют место максимумы яркостной температуры атмосферы, вызываемые резонансным излучением паров воды и молекул кислорода. Поверхность Земли также излучает радиошумы с эквивалентной температурой около 290 К, которые могут приниматься наземными антеннами по боковым лепесткам диаграммы направленности. Для крупноразмерных антенн, работающих при больших углах места, влияние теплового излучения поверхности Земли на эффективную температуру шума на входе приемного устройства будет мало.

Температуры излучения стандартной атмосферы и галактического фонаТаким образом, анализ выражения и рис. показывает, что оптимальный диапазон радиоволн с точки зрения обеспечения наилучших энергетических характеристик космических радиоканалов и достижения максимальной дальности связи с КА наземными средствами соответствует длинам волн от 1,5 до 30 см. В этом диапазоне эффективная температура внешних шумов, вносимых излучением атмосферы Земли и космического пространства, составит 5-40 К, а интегральное поглощение энергии радио-волн в тропосфере при отсутствии осадков не превысит 0,1 дБ при средних углах места антенны. Возможна организация космической связи с ДКА кроме указанного диапазона в миллиметровом, субмиллиметровом и оптическом диапазонах волн в “окнах прозрачности” атмосферы Земли.

Для снижения эквивалентной температуры собственных шумов на входе приемной системы наземной станции применяют малошумящие квантово-параметрические или молекулярные усилители высокой частоты, охлаждаемые с помощью криогенных устройств до температуры жидкого гелия. При этом в лучших усилителях, используемых в современных радиотехнических комплексах дальней космической связи, достигается температура шума 10-20 К.

Значение произведения А/дп в формуле (выше) зависит от вида модуляции сигнала, метода кодирования и выделения принятого сигнала, а также от допустимой вероятности ошибок приема информации. С точки зрения наилучшего использования энергетики радиолинии оптимальными являются многопозиционные ортогональные цифровые сигналы и фазовая манипуляция несущей частоты. В современных радиотехнических системах минимальное значение произведения ЛЛП составляет 3-4 F при вероятности ошибки приема сигнала 10-3, где F – скорость передачи цифровой информации.

Тяжелые носители Европейского космического агентства

При создании европейских носителей использовался принцип постепенного совершенствования существующих систем, считающийся традиционным в самолетостроении. Это показывают различные модификации РН, в том числе РН Ariane-4. В отличие от них тяжелая Ariane-5 – новый шаг вперед во всех отношениях, поэтому эта РН, как предполагают западноевропейские специалисты, должна стать первой моделью новой серии. С помощью РН Ariane-5 предусматривается…

Средства управления КА Японии

Национальное управление Японии по космосу NASDA (НАСДА) разрабатывает и эксплуатирует КА связи, ДЗЗ, метеообеспечения и другие, имеющие двойное назначение. Научные КА ведет Институт авиационно-космических исследований ISAS (ИСАС). Обе организации имеют собственные ЦУ КА и КИПы. Однако на некоторых КИПах, расположенных вне территории Японии, по-видимому, установлены средства обеих организаций, которые при необходимости используются совместно. Здесь НКУ…

Развитие и совершенствование методологии задания требований, оценки, контроля и обеспечения качества и надежности космических систем и их составных частей

Существенное возрастание сложности РКТ, разработка КА длительного функционирования и высокие требования к безотказности внесли принципиальные изменения в методологию обеспечения и контроля их надежности. Основное внимание при обеспечении и контроле надежности РКТ было направлено на анализ причин потенциальных и имевших место при испытаниях отказов, разработку эффективных мероприятий по их предупреждению. Основные принципы современной методологии обеспечения и…

Ракеты-носители, создаваемые на базе снимаемых с вооружения МБР

Ракета-носитель “Старт-1” создана Научно-техническим центром (НТЦ) “Комплекс” Московского института теплотехники (МИТ), который хорошо известен как создатель межконтинентальных баллистических ракет, в том числе МБР “Тополь” (SS-25), ставшей прообразом нового носителя. РН “Старт-1” предназначена для вывода малых космических аппаратов на низкие околоземные орбиты. Уже было проведено два успешных пуска этой ракеты-носителя с космодрома Свободный с экспериментальным КА…

Основные направления развития космодромов России

Существующая система средств выведения имеет в своем составе КРК легкого, среднего и тяжелого классов, базирующиеся на отечественном космодроме Плесецк и космодроме Байконур, расположенном на территории Республики Казахстан. Переход под юрисдикцию бывших республик СССР объектов космической инфраструктуры поставил перед Россией ряд проблем: обеспечение независимости в осуществлении космической деятельности, и в первую очередь в военной области; рациональное…

Современное состояние и перспективы международно-правового регулирования космической деятельности

Объективный ход мирового развития привел к тому, что космическое пространство стало, с одной стороны, сферой столкновения национальных интересов различных государств, а с другой – ареной расширяющегося международного сотрудничества. Фактически сегодня мир вступает в новую фазу геополитического противоборства – в фазу борьбы за достижение стратегического превосходства в космическом пространстве, проявляющегося в экономической, социально-политической и военной областях….

Тяжелые носители Японии

В рамках реализации новых космических программ NASDA работает над усовершенствованием РН Н2 – созданием более мощной модификации РН Н2А (“Эйч2А”). На первой ступени этой РН предполагается установить криогенный ЖРД LE-7A, a на второй – криогенный ЖРД LE-5B. В качестве навесных ускорителей должны быть установлены те же два навесных ускорителя, что и на РН Н2. РН…

Средства управления КА международных консорциумов и коммерческих фирм

Ряд коммерческих частных фирм эксплуатируют около 10 систем спутниковой связи. К числу таких систем относятся: Intelsat, Galaxy, Telstar, Panamsat, Inmarsat, Iridium, GlobalStar и др. Зона действия систем может быть глобальной или региональной (территория США и заданных районов) в зависимости от числа КА, используемых в системе. Как правило, фирмы имеют собственные малопунктные наземные комплексы, осуществляющие управление…

Опыт и принципы космического страхования

В России космическое страхование появилось в начале 1990-х гг. Этот период для космической деятельности характеризуется расширением практики создания и эксплуатации космических систем и комплексов на коммерческой основе, выходом ряда предприятий ракетно-космической отрасли на внешний рынок. В связи с этим актуальными становятся вопросы повышения экономической защиты космических проектов, прежде всего за счет созда-ния эффективно действующей системы…

Перспективные ракеты-носители

Государственный космический научно-производственный центр им. М.В. Хруничева в рамках программы “Ангара” ведет разработку целого ряда ракет-носителей, ключевым звеном которой является создание ракеты-носителя тяжелого класса – носителя XXI в. как транспортной основы космической программы России. ОКР по созданию семейства РН “Ангара” проводится на основании Указа Президента РФ № 14 от 6 января 1995 г. “О создании…

Все права защищены ©2006-2020. Перепечатка материалов с сайта возможна только с указанием ссылки на сайт – Невероятно, но факт!.
Email: hi@poznovatelno.ru. Карта сайта
 

Невероятно, но факт!