Невероятно, но факт!
Главная / Космос / Система дистанционного энергоснабжения

Система дистанционного энергоснабжения

В перспективе наиболее пред почтительным, не требующим топлива и экологически чистым способом энергоснабжения представляется преобразование солнечной энергии. Сохранение среды обитания, включая околоземное космическое пространство, также должно явиться одной из важнейших целей космической деятельности. Весьма актуальны разработка и реализация ряда целевых программ, ориентированных на ослабление и ликвидацию негативных последствий антропогенного влияния на окружающую среду с помощью ракетно-космических средств и систем.

К задачам таких программ следует отнести:

  • сохранение и восстановление озонового слоя;
  • удаление особо опасных отходов промышленности и энергетики в космическое пространство;
  • очистку околоземного космоса от осколков и фрагментов техногенного происхождения.

Для выполнения энергетических и экологических программ потребуется существенное качественное повышение технико-экономической эффективности применения средств РКТ, что будет сопряжено с необходимостью решения большого круга сложных научно-технических, технологических и организационных проблем. Согласно разрабатываемой в настоящее время концепции энергоснабжения Земли из космоса, основанной на преобразовании солнечной энергии и передаче ее на Землю в виде излучения микроволнового или оптического диапазона длин волн и предусматривающей постепенный перенос значительной части получения электроэнергии в космос, средства РКТ будут играть определяющую роль в производстве электроэнергии.

Разработка и внедрение технологии бесконтактной передачи энергии с помощью электромагнитного излучения уже длительное время входят в число наиболее актуальных проблем, определяющих перспективы развития многих отраслей народного хозяйства. Применительно к потребностям космической деятельности необходимость решения этих проблем связана с тенденцией увеличения уровней энергопотребления создаваемых КА и сроков их активного существования. Система дистанционного энергоснабжения (СДЭ) является эффективной альтернативой автономным бортовым энергоустановкам, так как позволит улучшить массогабаритные характеристики КА, уменьшить парусность объектов, снизить частоту коррекции орбиты и, как следствие, величину необходимого импульса корректирующих двигательных установок.

Возможными потребителями системы дистанционного энергоснабжения могут быть:

  • орбитальные группировки КА различного назначения;
  • единичные КА с высоким уровнем энергопотребления (в перспективе и пилотируемые КА типа МКС);
  • планетные (лунные, марсианские) базы и самоходные роботы;
  • разгонные ДУ КА на участке перевода с низких на высокие рабочие орбиты и маршевые ДУ КА для исследования дальнего космоса на участке разгона в околоземном пространстве.

Кроме того, энерголуч может использоваться для восстановления озонового слоя земной атмосферы, ликвидации метеоритов и фрагментов снятых с эксплуатации КА, а также для других целей. В ЦНИИМаш проработан проектный облик универсальной (пригодной для любого типа потребителя) и многоцелевой (способной работать одновременно с несколькими потребителями) космической электростанции СДЭ. При использовании СВЧ-излучения для передачи энергии масса станции достигнет 20 т, что позволит осуществить ее выведение одним пуском перспективной тяжелой РН «Ангара». Электростанция будет иметь в развернутом положении максимальный размер по оси силовой рамы 52 м и максимальный размах крыльев солнечных батарей (СБ) 517 м.

Перспективная солнечная батареяГабариты каждого из двух крыльев СБ 16×256 м. Мощность собираемого ими солнечного излучения равна 11,206 МВт, а электрическая мощность на выходе СБ при КПД 12-28 % составит 1,344-3,138 МВт. Мощность передаваемого с электростанции СВЧ-излучения при использовании современных СБ будет равна 1,1 МВт, а для перспективных 2,7 МВт. Удельная масса солнечной космической электростанции мощностью более 1 МВт, включая комбинированные пленочные солнечные батареи со сверхвысокочастотными излучателями, по оценкам специалистов,будет составлять около 5 кг/кВт.

Электростанция рассчитана на однократное использование и после выработки своего ресурса подлежит уводу с рабочей орбиты и ликвидации. Ее обслуживание заключается в периодической дозаправке топливными компонентами комплексной двигательной установки системы управления, ориентации и стабилизации (КДУ СУОС). Однако в случае выхода из строя в течение срока эксплуатации электростанции определенных элементов, например агрегатов системы трансформации солнечной энергии в СВЧ-излучение, или блоков передающей антенны, ремонтные операции с которыми доступны автоматическим сервисным аппаратам, они могут заменяться новыми. Замена СБ в случае их повреждения представляется нерентабельной, так как их масса составляет до 70 % от общей массы электростанции и их доставка на станцию практически равносильна выведению новой станции.

Конструктивно-компоновочная схема электростанции построена на базе контейнера полезной нагрузки РН «Протон-М» с диаметром обтекателя 5 м и высотой до 20 м. Основная идея заключается в использовании элементов конструкции контейнера в качестве несущих конструкций электростанции. Боковая обечайка используется как несущая основа передающей антенны — активной фазированной антенной решетки для СВЧ-луча. В объеме головного обтекателя размещаются КДУ СУ ОС и служебные системы электростанции.

Компоновочная схема включает в себя:

  • силовую раму;
  • систему сбора солнечной энергии;
  • систему преобразования и передачи электроэнергии от СБ к передающей антенне;
  • систему формирования и передачи энерголуча;
  • систему управления ориентацией и стабилизацией;
  • систему слежения за положением КА-потребителей и связи с ними по пилот-сигналу;
  • систему связи электростанции с наземными (напланетными) службами.

Расчеты, выполненные для электростанции с лазерной системой передачи, показал и, что она не может быть выведена одним пуском РН «Протон-М», так как ее минимальная общая масса (при излучаемой мощности всего в 185 кВт) практически на 30 % превышает массу полезной нагрузки носителя, причем свыше 50 % массы электростанции составляют лазерные генераторы луча, система их охлаждения и излучающая антенна.

Конструкция электростанции СДЭ может рассматриваться и как основа для создания энергетического модуля контактного снабжения перспективных энергоемких космических систем типа МКС, суммарная мощность энергосистемы которой составляет 400 кВт. Реализация такого модуля достаточно проста и дешева. Он отличается от электростанции СДЭ в основном отсутствием системы генерации СВЧ-излучения и передающей антенны и наличием системы развертывания контактного кабель-троса. Создание энергомодуля, с одной стороны, позволит более обоснованно подойти к проектированию и доводке конструкции электростанции СДЭ. С другой стороны, с его применением значительно уменьшатся парусность МКС и связанные с ней вибрационные нагрузки. Улучшатся в целом прочностные и динамические характеристики конструкции МКС. Энергомодуль и МКС — крупногабаритные, тяжелые объекты,скрепляемые между собой нежестко, образующие тросовую орбитальную сборку. Расстояние между ними определяется исходя из соображений безопасности и возможностей кабель-троса, автоматически подсоединяемого к МКС (с помощью малого сервисного КА). Учитывая, что в США разрабатывался проект энергомодуля для жесткой стыковки с Shuttle, а перспективная пилотируемая станция создается в рамках международной кооперации,такой энергомодуль может представлять интерес для всех стран-партнеров и работы по нему могут быть начаты уже в ближайшее время. В дальнейшем, по мере практической отработки конструкции электростанции и технологии лучевой передачи энергии, пилотируемые станции, в том числе и МКС, могут стать потребителями СДЭ.

Одна из проблем, непосредственно связанная с энергодвигательным обеспечением, состоит в организации больших, на порядок и более превышающих современный уровень, грузопотоков с земной поверхности на орбиты искусственных спутников Земли, а в дальнейшем — при полномасштабном развертывании системы энергоснабжения Земли из космоса — на окололунные орбиты и на поверхность Луны. Очевидно, что для решения этой проблемы также потребуется значительное повышение технико-экономической эффективности средств выведения объектов в космос, их межорбитальной транспортировки и транспортно-технического обслуживания при соблюдении условий охраны окружающей среды. Это, в свою очередь, определяет необходимость разработки высоконадежных, экономичных и экологически безопасных ракет-носителей, разгонных блоков, межорбитальных буксиров и других средств РКТ, а также соответствующих ДУ и ЭУ.

Общая характеристика космонавтики в мире

Вывод Советским Союзом 4 октября 1957 г. искусственного спутника на орбиту вокруг Земли положил начало космической гонке, которая к настоящему времени достигла небывалых масштабов. На начальном ее этапе, проходившем в условиях «холодной» войны, главные побудительные причины, задававшие тон в этом марафоне, носили политический и военный характер. Престиж и безопасность (в широком понимании) государства — вот…

Носители легкого класса США

В 1993 г. фирмой Lockheed была начата программа создания семейства РН LLV (Lockheed Launch Vehicle) малой и средней грузоподъемности. Первый пуск первой РН этого семейства — двухступенчатой твердотопливной РН LLV-1 малой грузоподъемности после неоднократных задержек из-за различных неполадок был осуществлен в августе 1995 г., однако закончился неудачей. Характеристики РН LMLV таковы: LMLV-1 грузоподъемностью порядка 1,0…

Направленность реструктуризации

Процессы реструктуризации аэрокосмической промышленности, происходящие за рубежом, направлены на достижение качественно нового состояния фирм, позволяющего не только выжить в условиях изменяющейся обстановки,но и обеспечить наращивание конкурентных возможностей на рынке космических товаров и услуг. Преимущества, получаемые фирмами в результате реструктуризации, можно условно выделить в четыре группы. Первая группа — текущая экономия на элементах постоянных издержек. Внутрифирменная…

Космические технологии и материаловедение

Регулярные исследования, касающиеся создания космических технологий и материаловедения, начались примерно с 1976 г. Проведение научных и технологических экспериментов в космосе открыло принципиально новые возможности углубленного исследования многих физических явлений, изучение которых на Земле затруднено или даже невозможно из-за действия силы тяжести. Анализ результатов проведенных экспериментов позволил существенно продвинуться в понимании особенностей протекания процессов диффузии, кристаллизации…

Ядерные энергетические и энергодвигательные установки

Более двадцати пяти лет назад в Семипалатинске был произведен первый энергопуск ядерного реактора ИВГ-1,с помощью которого была начата отработка конструкции ядерного ракетного двигателя. Уже тогда предполагали,что такой двигатель понадобится во время полета человека к Марсу. Позднее трудности с финансированием науки затормозили работу, но планируемая на 2017 г. экспедиция к Марсу оживила интерес к ядерному двигателю….

Выбор проектных характеристик радиолиний дальней космической связи

Выбор проектных характеристик космических радиолиний является сложной инженерной задачей и требует учета большого числа различных факторов, влияющих на энергетику радиолиний и качество передачи информации на требуемые дальности. Рассмотрим выражение, определяющее зависимость максимальной дальности связи D от параметров космической радиолинии, где Р — мощность передатчика; S6, S3 — эффективные площади бортовой и наземной антенн; hS —…

Международно-правовые принципы, касающиеся дистанционного зондирования Земли из космоса

В резолюции № 41/65 Генеральной Ассамблеи ООН от 3 декабря 1986 г. были одобрены «Принципы, касающиеся дистанционного зондирования Земли (ДЗЗ) из космического пространства». Принципы определяют применимость международного права в отношениях субъектов и исключают наличие правового вакуума в их деятельности по дистанционному зондированию Земли. Такая деятельность осуществляется в соответствии с международным правом, включая Устав ООН, Договор…

Состояние и развитие орбитальных станций

Орбитальные средства в зависимости от их принадлежности условно могут быть разделены на несколько больших групп: гражданские КА, коммерческие КА и военные КА. Эти группы, в свою очередь, можно разбить на подгруппы КА по целевому назначению: КА связи, КА дистанционного зондирования Земли, КА навигационного обеспечения, К А метеорологического обеспечения, исследовательские и экспериментальные КА, пилотируемые КА, разведывательные…

Общая характеристика зарубежных комплексов управления КА

Сети слежения за КА (наземные комплексы управления — НКУ, по отечественной терминологии командно-измерительные комплексы — КИК) начали создаваться за рубежом в конце 1950-х гг., с запуском первых КА США. До середины 1960-х гг. НКУ существовали только в США и в СССР. В дальнейшем НКУ были созданы другими странами, международными консорциумами и отдельными частными фирмами. В…

Надежность — основа эффективности функционирования космических систем будущего.

Одним из основных факторов, влияющих на эффективность использования космических систем, является их надежность. В период 1950-1980 гг. недостаточно высокий уровень надежности космических средств, прежде всего ракет-носителей и космических аппаратов, приводил к большому числу аварий и в значительной степени сдерживал развитие ракетно-космической отрасли, использование ее достижений в научных и прикладных програм-мах, развитие международного рынка космических изделий…

Все права защищены ©2006-2025. Перепечатка материалов с сайта возможна только с указанием ссылки на сайт – Невероятно, но факт!.
Email: hi@poznovatelno.ru. Карта сайта
 

Невероятно, но факт!