Невероятно, но факт!
Главная / Космос / Обеспечение надежности перспективных средств выведения

Обеспечение надежности перспективных средств выведения

Авария при старте носителя HI № 5ЛВ настоящее время в ведущих ракетно-космических странах мира проводятся интенсивные работы по созданию перспективных средств выведения. Позади длительный, сорокалетний (1957-1997 гг.) период создания ракет-носителей на основе боевых ракет. Значительное числомодификаций базовых моделей, разработанных в отмеченный период, созданы путем модернизации отдельных элементов РН в рамках установленных компоновочных схем. Эволюционный период совершенствования РН завершается, потенциальные возможности старых базовых вариантов исчерпаны.

Настоящий этап создания новых средств выведения имеет следующие особенности:

  • компоновочные (структурные) схемы РН могут быть сформированы оптимальным образом с учетом опыта эксплуатации РН;
  • для сокращения сроков и затрат на разработку и эксплуатацию образцов РН используется модульный принцип;
  • создания носителей на основе универсальных ракетных модулей или основных базовых элементов;
  • при разработке модулей и базовых элементов используются составные части (двигатели, система управления, конструкция), имеющие оптимальные на настоящий момент времени летно-технические характеристики.
  • Достигнутый уровень надежности существующих ракет-носителей характеризуется такими данными:

  • процент успешных пусков за все время эксплуатации РН для всех ракетных семейств не превышает 97 % (семейство «Спутник»), для базовых вариантов РН гарантированные оценки надежности не превышают уровень 0,969;
  • серии успешных пусков, превышающие достаточно высокий уровень — 50 пусков (что соответствует потенциальному уровню надежности 0,98), имеют ограниченное число РН («Союз-У»,»Протон-К», «Космос-3М», «Циклон-2», Delta-2 и Ariane-4);
  • время доводки РН до начала периода устойчивого уровня качества и надежности составляет 10…15 лет, что в настоящее время недопустимо;
  • производственные отказы вследствие нарушений технологической дисциплины и эксплуатационные отказы в значительной мере влияют на реальный уровень надежности достаточно отработанных и длительное время эксплуатируемых РН;
  • ставки страховых взносов, существенным образом влияющие на стоимость запуска, в настоящее время находятся на высоком уровне — 17…20%;
  • аварийность мирового парка ракет-носителей все еще высока, что наглядно подтверждается результатами 1998 и 1999 гг.
  • Аварийные пуски носителей Н2 (Япония), Titan-4, Delta-3 (США), «Протон-К» (Россия), «Зенит» (Украина) принесли значительный ущерб, повлияли на сроки и программы их дальнейшего использования:

  • ущерб от аварий РН Titan-4 (2.08.1993 г., 12.08.1998 г., 9.04.1999 г., 30.04.1999 г.) составляет более миллиарда долларов в каждом случае;
  • две аварии новой РН Delta-3 (17.01.1998 г., 5.05.1999 г.) существенно повлияли на планы запусков ракеты-носителя (спутник и запуск в мае 1999 г. были застрахованы на сумму 265 млн. дол.);
  • консорциум GlobalStar принял решение о замене РН «Зенит» на РН «Союз» при развертывании системы GlobalStar. Уже состоялось 6 успешных пусков РН «Союз» из 7 намеченных.
  • В целях обеспечения конкурентоспособности и эффективности использования перспективных РН требования к их надежности должны устанавливаться на повышенном уровне:

  • нормативное значение показателя надежности РН в полете RPH выбирается из интервала значений 0,985-0,995. На Тенденции изменения "наработки" на аварию РНпрактике это означает, что расчетное значение серии успешных пусков находится в диапазоне 65-200;
  • контрольный уровень надежности РН в полете RpH устанавливается 0,975-0,99 при доверительной вероятности у = 0,9. На практике это означает,что значения серий успешных пусков должны находиться в диапазоне 45-100.
  • Необходимо отметить,что требования к надежности РН Ariane-5 и Н2 установлены на уровне 0,985 и 0,99 соответственно.

    На основе обобщения опыта создания отечественных и зарубежных РН, выполнения программ Apollo, «Союз» — «Аполлон», Space Shuttle и «Буран» можно назвать некоторые общие принципы обеспечения надежности РН, которые целесообразно использовать при разработке новых или модернизации существующих РН.

    Принципы обеспечения надежности РН:

  • использование отработанных технических решений, узлов и систем;
  • создание РН по структурной схеме, содержащей минимум элементов, с последующим дублированием (в отдельных случаях троированием или использованием мажоритарной схемы) критичных элементов;
  • разработка перечней критичных элементов РН (на основе анализа возможных отказов и оценки их влияния на надежность и безопасность РН) и реализация дополнительных мероприятий по повышению и обеспечению надежности этих элементов;
  • обеспечение надежности в основном путем наземной отработки в условиях, максимально приближенных к эксплуатационным.
  • Надежность двигателей, их тип и размерность в определяющей степени влияют на уровень надежности РН в целом. Оптимальная стратегия обеспечения надежности двигательных установок РН состоит в том, чтобы в ДУ использовать минимально возможное число двигателей и отрабатывать двигатели на этапе наземной отработки в условиях, максимально приближенных к эксплуатационным, и в объеме, достаточном для подтверждения требуемых уровней надежности.

    Жидкостные ракетные двигатели РД-180 и РД-0120Особенно важна надежность ДУ первой ступени для РН среднего, тяжелого и сверхтяжелого классов. Обеспечение тяги первой ступени РН на уровне 1000…2000 тс определяется числом и размерностью используемых двигателей. В связи с этим выбор типа и размерности двигателей, используемых в ДУ первой ступени, приобретает первостепенное значение с точки зрения обеспечения надежности РН в целом.

    В разрабатываемых в США, ЕКА и Японии семействах РН в основном используются двигатели большой размерности с применением экологически чистых и высокоэнергетических компонентов топлива.

    Анализ рассмотренных семейств РН позволяет установить следующее:

    1. При формировании семейства РН по программе EELV в США практически отошли от привычной компоновочной схемы РН, в основу которой был положен принцип использования на первой ступени твердотопливных ускорителей большой и малой размерности (семейства РН Titan, Delta и отдельные модели РН Atlas). Это позволит существенно повысить надежность ДУ первой ступени.
    2. Использование двигателей большой размерности позволяет существенно упростить компоновочные схемы РН и уменьшить число двигателей, используемых на первых ступенях и РН в целом. В разрабатываемых носителях число двигателей, используемых на первой ступени и РН в целом, меньше, чем для существующих РН, в 2-5 раз.
    3. Для обеспечения одного и того же уровня надежности РН требования к надежности двигателей РН Atlas 2AS должны быть существенно выше требований к надежности двигателей РД-180 или RS-68. 
    4. Для этапа летных испытаний и начального этапа штатной эксплуатации практически для всех вновь разрабатываемых РН характерен повышенный уровень дефектности двигателей и других составных частей РН, обусловленный недостаточным уровнем наземной отработки, неполным учетом особенностей взаимного функционирования систем РН и отличием реальных условий полета от наземных. Уровень бездефектности многодвигательной ДУ также значительно уступает уровню бездефектности ДУ с малым числом двигателей.
    Коммерческие средства ДЗЗ

    Коммерческие средства дистанционного зондирования Земли из космоса только начинают свое развитие. Сельское хозяйство, региональное развитие, строительство, добывающая промышленность все шире используют данные ДЗЗ. Существующие космические средства ДЗЗ, такие как Spot, Landsat и т.п., не являются чисто коммерческими, несмотря на рыночные принципы распространения получаемой информации. Эти системы субсидируются государственными органами, так как на современном этапе их…

    Средства управления КА Франции

    Национальный центр космических исследований КНЕС (CNES) ведет как гражданские, так и военные космические программы (во взаимодействии с МО). Создана военная система спутниковой связи Sirakus (1988 г.) на основе КА Telecom. С 1995 г. запускаются разведывательные КА Helios, созданные на базе КА Spot. Ведется разработка КА Helios-2 с участием других европейских стран. Продолжается эксплуатация КА ДЗЗ…

    Обеспечение качества и надежности российского сегмента в международных космических программах

    Международное сотрудничество в области коммерческих космических программ в 1980-1990 гг. существенно расширилось. Вслед за организацией первых консорциумов Intelsat, Inmarsat последовало создание значительного числа всемирных и региональных систем и программ — Comsat, Landsat, Meteosat, Eutelsat, Panamsat, Asiasat, Iridium, GlobalStar и т.п. В 1998 г. начато создание Международной космической станции. Основные особенности этапа: значительное увеличение объема работ,…

    Развитие и особенности системы средств выведения

    Развитие средств выведения полезных грузов в космическое пространство (ракет-носителей) в нашей стране шло по нескольким направлениям. Первое направление, возникшее в 1957 г., связано с созданием ряда РН на базе межконтинентальной баллистической ракеты (МБР) Р-7. Эта МБР была разработана в знаменитом ОКБ-1 (с 1966 г. — Центральное конструкторское бюро экспериментального машиностроения (ЦКБЭМ), с 1974 г. —…

    История создания космодромов

    Космодром — это оборудованная в инженерном отношении территория, на которой размещены функционально увязанные между собой сооружения и технические средства, обеспечивающие прием с заводов-изготовителей и хранение элементов ракетно-космической техники, подготовку средств выведения и космических аппаратов и их пуск. При использовании многоразовых средств выведения на космодроме могут быть созданы ремонтно-профилактические позиции для обеспечения послеполетного обслуживания этих средств….

    Состояние и перспективы развития комплексов средств автоматизации

    Основу комплексов средств автоматизации (КСА) центров управления полетом КА и центров обработки информации, эксплуатируемых в НАКУ в 1990-х гг., составляли малопроизводительные вычислительные системы второго и третьего поколений, более 50 % которых многократно выработали установленный ресурс, устарел и морально и физически (ЭВМ серии СМ, М-222, ВК-2М45/46, «Эльбрус-1» и др.) Уровень автоматизации управления КА составлял 70-80%. Неудовлетворительное…

    Средства выведения — локомотивы космонавтики

    Космические средства выведения представляют собой сложные технические транспортные системы, предназначенные для доставки полезных нагрузок в космическое пространство на заданные орбиты. Все существующие космические средства выведения, а также средства, эксплуатация которых будет осуществляться в обозримой перспективе (25…30 лет), имеют в своей основе принцип реактивного движения. Первые сообщения о применении устройств, использующих этот принцип, появились в китайских…

    Средства управления КА Великобритании

    Великобритания эксплуатирует военные КА связи Skynet, участвует в управлении КА связи НАТО. Великобритания считается крупнейшим в Европе (и вторым в мире) потребителем космической информации с разных КА многих стран и организаций. Результаты обработки данных (включая снимки с метео-КА и КА ДЗЗ), накопленные за ряд лет, могут использоваться в военных целях, например во время кризисных ситуаций….

    Оптимизация стратегий развертывания и восполнения многоспутниковых космических систем по критериям надежности и стоимости

    В конце 1970-х гг. в нашей стране и в США было начато решение задачи по разработке и развертыванию глобальных навигационных систем ГЛОНАСС и Navstar. B составе которых должны были функционировать 24 полноразмерных КА (21 основной + 3 резервных). Существенное увеличение числа КА в системе значительно усложнило решение задачи развертывания в установленные сроки. В 1990-е гг….

    Разгонные блоки ракет-носителей

    Важнейшей составной частью системы средств выведения являются разгонные блоки (РБ), называемые также межорбитальными буксирами. Разгонные блоки обеспечивают перемещение выводимых полезных грузов с орбиты на орбиту или направление их на отлетные и межпланетные траектории. Для этого РБ должны иметь возможность выполнять один или несколько маневров, связанных с изменением скорости полета, для чего в каждом случае предполагается…

    Все права защищены ©2006-2021. Перепечатка материалов с сайта возможна только с указанием ссылки на сайт – Невероятно, но факт!.
    Email: hi@poznovatelno.ru. Карта сайта
     

    Невероятно, но факт!